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Abstract 
To facilitate the investigation of the tumour response onto radiation therapy in vivo, a mo-
dified kinetic LQ-model is developed. It is based on a dose quantity which is considered as 
proportional to cellular damage. The resulting differential equations are implemented in a 
computer program and solved numerically. The model is in agreement with the kinetic mo-
del of Carlone. In contrast to the model of Carlone and other models focussing DNA lesion 
kinetics, different aspects of tissue dynamics (e.g. repopulation, oxygenation) can be inte-
grated directly in the proposed LQ-based model. 
 
 
1. Introduction 
In vivo tumour response to ionizing radiation can differ remarkably from the re-
sponse observed in vitro. This difference may be based on several processes related 
to the interaction of tumour cells with tumour environment (e.g. endothelial cells 
and tumour vasculature [1]). Also immune reactions and the related inflammatory 
processes may have an important influence. The adaption of radiobiological mo-
dels based on the observation of clonogenic survival in vitro (e.g. the LQ model) to 
the situation in vivo is difficult. Repair, repopulation, interaction with host tissue, 
influence of radiotherapy onto vasculature and oxygenation can be described by the 
rates of changes of the related quantities (population size, cell densities, concentra-
tions etc.). This approach directly leads to kinetic models using differential equa-
tions. Kinetic models are used for modeling DNA-lesion kinetics and repair [2,3], 
early tissue reactions [4] or the risk of radiation induced cancer [5]. Probably, it 
may be difficult to solve the resulting differential equations analytically under cer-
tain conditions. This problem can be avoided by using numerical integration. We 
investigated a modified kinetic LQ model which has a high degree of flexibility for 
extensions and may therefore be a basis for better understanding of tumour dyna-
mics in vivo. Two different models for tumour cell repopulation were compared 
here. 
 
2. Materials and Methods 
The proposed model is based on an ordinary differential equation for tumour po-
pulation size, which is corresponding to the LQ-model. Assuming no change of 
cellular repair (low dose rate) and no repopulation of tumour cells, the change (re-
duction) of the size of an irradiated population is depending on the numbers of tu-
mour cells 1 1( )N N t=  itself, the dose rate R D= &  (which is the first derivative of 
the dose ( )D D t=  in respect to the time) and a radio-sensitivity coefficient α : 
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1 1

dN dDN R N
dt dt

α α= − ⋅ = − ⋅  (1) 

 
The solution of Eq. (1) is 1 0( ) DN D N e α−= ⋅ . The extension to higher doses and 
higher dose rates can be realised by a second, dose-depending term using a co-
efficient 2β : 
 

 ( )1
12dN D R N

dt
α β= − + ⋅ ⋅  (2) 

 
Separation and integration over dose results in 

2( )
1 0( ) D DN D N e α β− += ⋅ . The natural 

logarithm of surviving fraction 1 0/S N N=  is given by 2ln ( )S D Dα β= − + . This 
is corresponding to the LQ-model. 
 Regarding the tumour volume, lethally damaged cells are not eliminated imme-
diately. Therefore, a second cell population 2N is introduced, which is reduced by 
first order kinetics using the kinetic constant resk : 
 

 2 1
2res

dN dN k N
dt dt

= −  (3) 

 
For inclusion of dose and time dependent change of cellular repair and repopu-
lation, Eq. (2) is modified. First, the (physical) dose is substituted by a biological 
dose quantity 1iΓ , which is representing a biological active proportion of the ap-
plied dose. The index i corresponds to the biological process which is linked to the 
biological dose quantity 1iΓ . Here, i = 1 is corresponding to cellular repair process-
ses. The second modification is concerning the inclusion of repopulation by an ad-
ditional term describing the tumour growth model using a dose and population size 
depending function 21( , )f N Γ : 
 

 1
11 1 1 21( 2 ) ( , )dN R N f N

dt
α βΓ Γ= − + ⋅ ⋅ +  (4) 

 
In a first step, it is assumed, that 11Γ  is different to 21Γ . The two quantities may 
not be independent from each other since repair of cellular damages and cell divi-
sion are coupled processes. 
 The quantities 1iΓ  are determined by the following kinetic model when assu-
ming first order repair kinetics: 
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The kinetic constants iγ may be different for repair ( 1i = ) and repopulation ( 2i = ), 
but the two constants may be coupled. Regarding Eq.(5) and (6), the following con-
dition is fulfilled: [ ] [ ]2lim ( ) lim ( )i tott t

t D t DΓ
→∞ →∞

= = . The impact of hypothetical quan-

tities 1iΓ onto the cells is mediated by the radiosensitivity constant β at one hand 
and by 21( , )f N Γ  at the other hand. Here, a repopulation model using a dose inde-
pendent repopulation term 1Nk N⋅  with constant Nk  is compared with the fol-
lowing dose dependent function describing the radiation induced inhibition of the 
rate of growth: 
 

  1
21 21

2 21

( , ) ( )
(1 )

R
N

R

kf N N k N
k

Γ Γ
Γ

= ⋅ = ⋅
+ ⋅

 (7) 

 
 
For an irradiation with constant dose rate R, the dose quantities 1iΓ  reach a steady 
state level 1i eqΓ . The condition for steady state is given by: 
 

  1i eq
i

RΓ
γ

=  (8) 

 
If the repopulation term is neglected, the logarithm of surviving fraction becomes 
constant at high doses (when reaching the equilibrium): 
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Therefore, the model is exhibiting a linear-quadratic-linear behaviour as observed 
for high fraction doses [6]. The model was compared to existing kinetic radio-
biological models. The proposed kinetic LQ-model without repopulation leads to 
identical results as the model of Carlone [3], when the kinetic constant 1γ  is adap-
ted to the dose rate using the relation 1 p Rγ μ ε= + . The constant p is defined as the 
yield per unit dose of sub-lethal lesions [7] and R is the dose rate (as above). In the 
model of Carlone, pre-existing sublethal lesions can interact with the formation of 
new lesions with the interaction probability ε . The relation to the constant for ra-
diosensitiyity β  is given by 2pβ ε= . 
 The differential equations Eq. (3), (4), (5) and (6) were implemented in a com-
puter program using a Runge-Kutta algorithm. Also the kinetic model of Carlone et 
al. [3] was implemented. The surviving fractions as function of dose or time and 
the resulting TCP’s for both models can be compared directly. Different therapy 
modalities were investigated. Also different approaches for repopulation were 
tested. 



3. Results 
For biologically targeted radionuclide therapy, the kinetic LQ-model is in agree-
ment to classical LQ calculations [8]. For fractionated RT, the proposed model also 
is in agreement with the compartmental model of Carlone, even when the quantity 

11Γ  is far away from the equilibrium. Fig.1 shows the impact of 11Γ  onto the loga-
rithm of surviving fraction. The case 1γ =  0 d-1 is corresponding to the common 
LQ formalism. With increasing value for 1γ , the final slope becomes flatter and a 
linear-quadratic-linear behavior is exhibited. 
 For all simulations, the parameters for radio-sensitivity are chosen as 

-10.3 Gyα =  and -20.05 Gyβ =  respectively. 
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Fig.1. Relation between 11Γ  and logS: Left Diagram shows the temporal development of 

1 11Γ Γ=  for a fraction of D = 12.5 Gy. Right diagram shows the logarithm of surviving 
fraction for a single fraction. The parameters are the following: (a) 1γ =  0 d-1; (b) 

1γ = 70.22 d-1; (c) 1γ =  140.45 d-1; (d) 1γ = 210.67 d-1; no repopulation ( Nk = 0 d-1), calcu-
lated with Runge-Kutta method with Δt 60.5 10−= ⋅  d. 
 
 
Referring to Eq. (7), the influence of 21Γ  onto 21( )Nk Γ  is showed in Fig.2 for 
different values of 2Rk . The comparison between the different models for repopu-
lation is demonstrating the effect of growth delay due to radiation (Fig.3). In this 
model, a remarkable growth delay can be produced only by a reasonably large 
value for 2Rk  (above 4.0 Gy-1, Fig.2. curve e). In addition, the effect is only promi-
nent for a relatively slow repair process and therefore for a small constant 2γ  
(comparable to 1Rk , which may be considered as intrinsic growth constant). For the 
illustrated case in Fig.3, 2γ  is set to 2 d-1. The volume reduction (Fig.3) is also de-
pending on the rate of tissue resorption. The larger the value for resk  the stronger 
the visible effect onto the difference curves of the tumour volume and the loga-
rithm of surviving fraction (Fig.3). 
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Fig.2. Dose-dependency of Nk : Left Diagram shows the 21Γ  - dependency of Nk ; Right 
diagram shows the temporal development of 21( )Nk Γ  for two fractions of 7 Gy. 
Parameters: 1Rk = 0.6 d-1; 1γ = 163.2 d-1, 2γ = 2 d-1; (a) 2Rk =  0.0 Gy-1 (corresponding to 
the model with a constant value for Nk ); (b) 2Rk = 1.0 Gy-1; (c) 2Rk = 2.0 Gy-1; (d) 2Rk = 3.0 
Gy-1; (e) 2Rk = 4.0 Gy-1 
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Fig.3. Impact of radiation depending Nk onto tumour size: Left Diagram is showing the 
logarithm of survival as function of dose D, same parameters as in Fig.2. Right: Temporal 
development of the difference ΔV of tumour volume V (normalized to 1000 units) between 
dose independent and dose dependent growth constant Nk , the necrotic cells 2N  are also 
included ( resk = 2 d-1). 
 
 
4. Conclusions 
The kinetic formulation of the LQ-model offers a high degree of flexibility for 
extensions to repair, repopulation and different therapy modalities. For the tested 
cases, the proposed model is in agreement with existing radiobiological models 
also for high dose rates and doses. Extensions to arbitrary dose distributions can be 
implemented in a very efficient way and provide additional information for opti-
mizing radiotherapy. The proposed model allows the quantitative analysis of 



growth delay of tumours under treatment. Calculations using the presented model 
suggest that a growth delay is only observable in the experiment for a strong dose 
dependence of the growth constant Nk . 
 The system can be explored by plotting the logarithm of surviving fraction and 
the tumour volume versus dose or time. Therefore, the computer simulation also 
may be used for educational purpose (e.g. to learn about effects of hyper- or hypo-
fractionation). 
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