Dosimetry in Nuclear Medicine Therapies

F. Forrer
Institut of Nuclear Medicine
University Hospital Basel

Therapies

- Radioiodine
- Phosphonates
- Metabolites (e.g. ¹³¹I-mIBG)
- Radiopeptides
- Radioimmunotherapy
- Radiosynoviothesis
- Intracavitary Therapy

Background

- In comparison to conventional pharmaceuticals, radiopharmaceuticals suite for relatively simple quantification
- The first treatment with radioiodine was described in 1942
- In radioiodine therapy pretherapeutic dosimetry is demanded by law
- Most often the "Marinelli Formula" is used
- This formula was first described 1948¹

¹Marinelli et al. Am J Roentgenol 1948; 59: 260-81.

Marinelli Formula

Used in radioiodine therapy for benign thyroid disorder

Absorbed Dose * Volume

Max. Uptake (%) * eff. Half-life

Radiopeptides

- Many new peptides are in preclinical studies
- The options for diagnostic and therapy with radiopeptides will increase
- In therapy the dose limiting toxicity is usually sever and has to be avoided
- Therefore, a safe but effective activity has to be defined
- Individual pretherapeutic dosimetry is desirable

DOTATOC

- Somatostatin analogue
- A high density of somatostatin receptors is found on many tumors, mainly neuroendocrine tumors
- Therapies with Y-90 labelled DOTATOC were started in Basel in 1996
- More than 700 patients are treated so far

Magic Bullet Approach

DOTATOC

Results

Complete remission	5		
Partial remission	26	}	89 %
Stable disease	72		

Progressive disease 13 11 %

20h p.i.; 7400 MBq ⁹⁰Y-DOTATOC Neuroendocrine tumor of the pancreas

0040
15.11.48

04.01.01
09.16.35.97
3 IMA 13
SPI 3
SP 182.5

R

kV 120
mAs 165
TI 0.5
GT 0.0
SL 5.0/2 5/12.5
346.3/0
B90f L3C0

Optiray iv

2.

20h p.i.; 7400 MBq ⁹⁰Y-DOTATOC Neuroendocrine tumour of the pancreas

Correlating CT-scan

SPECT / CT mit ¹¹¹In-Octreotide

⁶⁸Ga-DOTATOC-PET

- Highly specific for visualisation of somatostatin receptor positive tumor tissue
- Anatomic localisation is difficult in certain cases

⁶⁸Ga-DOTATOC-PET

Freundlicherweise zur Verfügung gestellt von Dr. M. Hofmann, Inselspital Bern

A Comparison of ¹¹¹In-DOTATOC and ¹¹¹In-DOTATATE: Biodistribution and Dosimetry in the Identical Patients with Metastatic Neuroendocrine Tumors

F. Forrer ¹, H. Uusijärvi ², M. Cremonesi ³, C. Waldherr ¹, P. Bernhardt ², J. Müller-Brand ¹, H. Mäcke ⁴

¹ Institute of Nuclear Medcine, University Hospital Basel, Switzerland

² Department of Radiation Physics, Göteborg, Sweden

³ Divisione di Medicina Nucleare, Istituto Europeo di Oncologia, Milano, Italia

⁴ Division of Radiological Chemistry, University Hospital Basel, Switzerland

Background

• Both, ¹⁷⁷Lu-DOTATATE (DOTA-Tyr³-Thr³-Octreotide) and ⁹⁰Y-DOTATOC (DOTA-Tyr³-Octreotide), are used for Peptide Receptor Mediated Radionuclide Therapy (PRMRT) in patients with metastatic neuroendocrine tumours.

• No direct comparison of biodistribution and dosimetry in patients has been performed with those two compounds.

DOTA-TOC DOTA-Tyr³-Octreotide

DOTA-TATE DOTA-Tyr³-Thr⁸-Octreotide

Methods

• 5 male patients (50-74 years) with known metastatic neuroendocrine tumours.

• All Patients were pretreated with ⁹⁰Y-DOTATOC. Time since treatment 14 - 25 months.

Methods

- Injection of 222 MBq ¹¹¹In-DOTATOC and 222 MBq ¹¹¹In-DOTATATE respectively in an interval of 2 weeks.
- Whole body scans were performed immediately, 1, 2, 4, 24 and 48 hours after injection with a dual head camera.
- Blood samples were drawn 10, 20, 30 and 60 minutes and 2, 4, 24 and 48 hours after injection.
- Urine was collected up to 48h p.i. (0-2 h, 2-4 h, 4-24 h, 24-48 h).

Methods

- We used ¹¹¹In as a surrogate for ⁹⁰Y.
- The dose for the whole body, the liver, the spleen, the kidneys and the clearly visible tumours were calculated with ROI-Technique and MIRDOSE 3.0.
- The dose to the red marrow was calculated from the activity in the blood.
- We used a compartment-model a described by *Cremonesi et al. (EJNM, August 1999).*

Bloodclearance

Absorbed Doses

Tumour-to-Kidney-Ratio

222 MBq 111In- DOTATOC

24h p.i.

222 MBq ¹¹¹In- DOTATATE

Comparison of Absorbed Doses

	Forrer et al.	Cremonesi et al.	Förster et al.	Krenning et al.
derived from	¹¹¹ In-DOTATOC	¹¹¹ In-DOTATOC	⁸⁶ Y-DOTATOC	⁸⁶ Y-DOTATOC
Kidney	2.84	3.31	2.73	2.1
	(±0.64)	(± 2.22)	(± 1.41)	(± 0.78)
Liver	0.92	0.72	0.66	
	(±0.35)	(± 0.57)	(± 0.15)	-
Spleen	6.57	7.62	2.32	1.83
	(±5.25)	(±6.30)	(± 1.97)	(± 1.45)
Red marrow	0.17	0.03	0.049	0.11
	±0.02)	(±0.01)	(± 0.002)	(± 0.06)

Variability in receptor homogeneity

Radioimmunotherapy

- Radioimmunotherapy (RIT) showed convincing results with ⁹⁰Y and ¹³¹I labelled antibodies in treatment of B-cell lymphoma
- The monoclonal antibody Rituximab is widely used for treatment of malignant lymphoma
- We are performing a clinical phase I/II study with ¹⁷⁷Lu-DOTA-Rituximab

Radioimmunotherapy with Lutetium-177-DOTA-Rituximab A Phase I/II - Study in Patients with Follicular and Mantle Cell Lymphoma

F. Forrer¹, A. Lohri², H. Uusijärvi³, G. Moldenhauer⁴, J. Chen¹, M. Dobbie⁵, P. Schmid⁵, R.Herrmann⁵, H. Mäcke¹, J. Müller-Brand¹

- ¹ Nuclear Medicine, University Hospital Basel, Switzerland
- ² Medical University Clinic, Oncology, Kantonsspital Liestal, Switzerland
- ³ Department of Radiation Physics, University of Göteborg, Sweden
- ⁴ Division of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
- ⁵ Medical Oncology, University Hospital Basel, Switzerland

Chimeric Radiolabelled Antibody

 F_v = variable fragment murine part

 F_c = constant fragment human part

Protocol ¹⁷⁷Lu-DOTA-Rituximab

• Staging: [18F] FDG-PET, CT, bone marrow biopsy, blood counts, chemistry incl. creatinine

Protocol ¹⁷⁷Lu-DOTA-Rituximab

- Scintigraphic images, blood and urine samples up to 15 days p.i.
- Weekly blood counts and chemistry to week 8 or after resolution of nadir, then monthly
- Restaging after 2 month

Blood Clearance

2035 MBq (55 mCi) ¹⁷⁷Lu-DOTA-Rituximab

FDG-PET

¹⁷⁷Lu-DOTA-Rituximab

FDG-PET

Pre

4d p.i.

Post

Blood Clearance

State of the art dosimetry in Nuclear Medicine

- In treatment of benign thyroid disorders obligatory
- Malignant thyroid tumors: fixed doses
- Phosphonates: fixed dose
- Radiopeptide: most often adapted to body surface
- Radioimmunotherapy: adapted to body weight / body surface

Conclusions

- Dosimetry in Nuclear Medicine therapy is not well established
- Accurate dosimetry could probably decrease toxicity
- New methods like SPECT-CT and PET-CT will help to simplify dosimetry
- In routine treatments a simple, accurate way of dosimetry is needed!

Conclusions

- To define a maximum tolerated injected activity, the maximum tolerated dose of normal tissue has to be known
- Not enough data are existing for low-dose-rate radiation
- Inhomogeneous distribution of activity causes problems in dosimetry

fforrer@uhbs.ch