Dosimetry in Nuclear Medicine Therapies F. Forrer Institut of Nuclear Medicine University Hospital Basel # Therapies - Radioiodine - Phosphonates - Metabolites (e.g. ¹³¹I-mIBG) - Radiopeptides - Radioimmunotherapy - Radiosynoviothesis - Intracavitary Therapy # Background - In comparison to conventional pharmaceuticals, radiopharmaceuticals suite for relatively simple quantification - The first treatment with radioiodine was described in 1942 - In radioiodine therapy pretherapeutic dosimetry is demanded by law - Most often the "Marinelli Formula" is used - This formula was first described 1948¹ ¹Marinelli et al. Am J Roentgenol 1948; 59: 260-81. #### Marinelli Formula Used in radioiodine therapy for benign thyroid disorder Absorbed Dose * Volume Max. Uptake (%) * eff. Half-life # Radiopeptides - Many new peptides are in preclinical studies - The options for diagnostic and therapy with radiopeptides will increase - In therapy the dose limiting toxicity is usually sever and has to be avoided - Therefore, a safe but effective activity has to be defined - Individual pretherapeutic dosimetry is desirable #### **DOTATOC** - Somatostatin analogue - A high density of somatostatin receptors is found on many tumors, mainly neuroendocrine tumors - Therapies with Y-90 labelled DOTATOC were started in Basel in 1996 - More than 700 patients are treated so far # Magic Bullet Approach # **DOTATOC** ### Results | Complete remission | 5 | | | |--------------------|----|---|------| | Partial remission | 26 | } | 89 % | | Stable disease | 72 | | | Progressive disease 13 11 % 20h p.i.; 7400 MBq ⁹⁰Y-DOTATOC Neuroendocrine tumor of the pancreas 0040 15.11.48 04.01.01 09.16.35.97 3 IMA 13 SPI 3 SP 182.5 R kV 120 mAs 165 TI 0.5 GT 0.0 SL 5.0/2 5/12.5 346.3/0 B90f L3C0 Optiray iv 2. 20h p.i.; 7400 MBq ⁹⁰Y-DOTATOC Neuroendocrine tumour of the pancreas Correlating CT-scan # SPECT / CT mit ¹¹¹In-Octreotide #### ⁶⁸Ga-DOTATOC-PET - Highly specific for visualisation of somatostatin receptor positive tumor tissue - Anatomic localisation is difficult in certain cases # ⁶⁸Ga-DOTATOC-PET Freundlicherweise zur Verfügung gestellt von Dr. M. Hofmann, Inselspital Bern # A Comparison of ¹¹¹In-DOTATOC and ¹¹¹In-DOTATATE: Biodistribution and Dosimetry in the Identical Patients with Metastatic Neuroendocrine Tumors F. Forrer ¹, H. Uusijärvi ², M. Cremonesi ³, C. Waldherr ¹, P. Bernhardt ², J. Müller-Brand ¹, H. Mäcke ⁴ ¹ Institute of Nuclear Medcine, University Hospital Basel, Switzerland ² Department of Radiation Physics, Göteborg, Sweden ³ Divisione di Medicina Nucleare, Istituto Europeo di Oncologia, Milano, Italia ⁴ Division of Radiological Chemistry, University Hospital Basel, Switzerland # Background • Both, ¹⁷⁷Lu-DOTATATE (DOTA-Tyr³-Thr³-Octreotide) and ⁹⁰Y-DOTATOC (DOTA-Tyr³-Octreotide), are used for Peptide Receptor Mediated Radionuclide Therapy (PRMRT) in patients with metastatic neuroendocrine tumours. • No direct comparison of biodistribution and dosimetry in patients has been performed with those two compounds. DOTA-TOC DOTA-Tyr³-Octreotide DOTA-TATE DOTA-Tyr³-Thr⁸-Octreotide #### Methods • 5 male patients (50-74 years) with known metastatic neuroendocrine tumours. • All Patients were pretreated with ⁹⁰Y-DOTATOC. Time since treatment 14 - 25 months. #### Methods - Injection of 222 MBq ¹¹¹In-DOTATOC and 222 MBq ¹¹¹In-DOTATATE respectively in an interval of 2 weeks. - Whole body scans were performed immediately, 1, 2, 4, 24 and 48 hours after injection with a dual head camera. - Blood samples were drawn 10, 20, 30 and 60 minutes and 2, 4, 24 and 48 hours after injection. - Urine was collected up to 48h p.i. (0-2 h, 2-4 h, 4-24 h, 24-48 h). #### Methods - We used ¹¹¹In as a surrogate for ⁹⁰Y. - The dose for the whole body, the liver, the spleen, the kidneys and the clearly visible tumours were calculated with ROI-Technique and MIRDOSE 3.0. - The dose to the red marrow was calculated from the activity in the blood. - We used a compartment-model a described by *Cremonesi et al. (EJNM, August 1999).* #### Bloodclearance ## **Absorbed Doses** # Tumour-to-Kidney-Ratio 222 MBq 111In- DOTATOC 24h p.i. 222 MBq ¹¹¹In- DOTATATE # Comparison of Absorbed Doses | | Forrer et al. | Cremonesi et al. | Förster et al. | Krenning et al. | |--------------|---------------------------|---------------------------|-------------------------|-------------------------| | derived from | ¹¹¹ In-DOTATOC | ¹¹¹ In-DOTATOC | ⁸⁶ Y-DOTATOC | ⁸⁶ Y-DOTATOC | | Kidney | 2.84 | 3.31 | 2.73 | 2.1 | | | (±0.64) | (± 2.22) | (± 1.41) | (± 0.78) | | Liver | 0.92 | 0.72 | 0.66 | | | | (±0.35) | (± 0.57) | (± 0.15) | - | | Spleen | 6.57 | 7.62 | 2.32 | 1.83 | | | (±5.25) | (±6.30) | (± 1.97) | (± 1.45) | | Red marrow | 0.17 | 0.03 | 0.049 | 0.11 | | | ±0.02) | (±0.01) | (± 0.002) | (± 0.06) | # Variability in receptor homogeneity # Radioimmunotherapy - Radioimmunotherapy (RIT) showed convincing results with ⁹⁰Y and ¹³¹I labelled antibodies in treatment of B-cell lymphoma - The monoclonal antibody Rituximab is widely used for treatment of malignant lymphoma - We are performing a clinical phase I/II study with ¹⁷⁷Lu-DOTA-Rituximab # Radioimmunotherapy with Lutetium-177-DOTA-Rituximab A Phase I/II - Study in Patients with Follicular and Mantle Cell Lymphoma F. Forrer¹, A. Lohri², H. Uusijärvi³, G. Moldenhauer⁴, J. Chen¹, M. Dobbie⁵, P. Schmid⁵, R.Herrmann⁵, H. Mäcke¹, J. Müller-Brand¹ - ¹ Nuclear Medicine, University Hospital Basel, Switzerland - ² Medical University Clinic, Oncology, Kantonsspital Liestal, Switzerland - ³ Department of Radiation Physics, University of Göteborg, Sweden - ⁴ Division of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany - ⁵ Medical Oncology, University Hospital Basel, Switzerland # Chimeric Radiolabelled Antibody F_v = variable fragment murine part F_c = constant fragment human part #### Protocol ¹⁷⁷Lu-DOTA-Rituximab • Staging: [18F] FDG-PET, CT, bone marrow biopsy, blood counts, chemistry incl. creatinine ### Protocol ¹⁷⁷Lu-DOTA-Rituximab - Scintigraphic images, blood and urine samples up to 15 days p.i. - Weekly blood counts and chemistry to week 8 or after resolution of nadir, then monthly - Restaging after 2 month ### **Blood Clearance** 2035 MBq (55 mCi) ¹⁷⁷Lu-DOTA-Rituximab #### FDG-PET #### ¹⁷⁷Lu-DOTA-Rituximab #### FDG-PET Pre 4d p.i. Post ### **Blood Clearance** # State of the art dosimetry in Nuclear Medicine - In treatment of benign thyroid disorders obligatory - Malignant thyroid tumors: fixed doses - Phosphonates: fixed dose - Radiopeptide: most often adapted to body surface - Radioimmunotherapy: adapted to body weight / body surface #### Conclusions - Dosimetry in Nuclear Medicine therapy is not well established - Accurate dosimetry could probably decrease toxicity - New methods like SPECT-CT and PET-CT will help to simplify dosimetry - In routine treatments a simple, accurate way of dosimetry is needed! #### Conclusions - To define a maximum tolerated injected activity, the maximum tolerated dose of normal tissue has to be known - Not enough data are existing for low-dose-rate radiation - Inhomogeneous distribution of activity causes problems in dosimetry fforrer@uhbs.ch